

GHG Reduction Estimates Work leveraged the Integrated Dairy Anaerobic Digestion Model (IDAD) • The Integrated Dairy Anaerobic Digestion Model (IDAD) was created to assess the regional impact of AD adoption and used many of the same underlying assumptions as

- The model was created by a team of national dairy experts and the modeling was done by team collaborator, Sustainability Science (Jonah Greene, MS and Jason Quinn, PhD)
- A paper titled, "National Greenhouse Gas Emissions Reduction Potential from Adopting Anaerobic Digestion on Large-Scale Dairy" used the model for estimating GHG reductions for two adoption scenarios across US Dairy and is currently under peer review with the journal Environmental Science & Technology.

The IDAD Model Improves on the CARB GREET Methodology

- · Significantly more detail in modeling methodology for ambient lagoon systems and long-term storage
 - Mass balance tracks both degradable and non-degradable VS through all calculations
 - · Monthly modeling resolution allows for exploration into different irrigation/lagoon cleanout schedules
 - Added equations and methodology for the inclusion of settling basins in lagoon systems
- Pre-formulated scenarios allow for regionally-resolved results informed by expert opinion
 - Expert knowledge used to formulate region-specific scenarios reflective of current practices across the US
 - Incorporation of regional temperature data and regional grid emissions factors allows for more thorough analysis
 of the GHG burdens and credits of the modeled biogas use pathways (CHP and RNG)

· Consideration for N2O implications of products

- · Informed by peer review work and professional opinion
- Robust and transparent modeling framework integrated with reputable industry data
 Flexible and modular framework allows for future model expansion and incorporation of new data as it becomes available

3

the CARB GREET model.

Manure Technology Team Supported Development of the IDAD Model, Industry AD Projections and

Supported Development of the IDAD Model, Industry AD Projections and Implications of Non-AD Technologies at the Farm Scale

Name	Affiliation	Email	
April B. Leytem	USDA ARS, Kimberly, ID	april.leytem@usda.gov	
Robert B. Williams	California Biomass Collaborative, University of California, Davis	rbwilliams@ucdavis.edu	
Stephen R. Kaffka	California Biomass Collaborative, University of California, Davis	srkaffka@ucdavis.edu	
C. Alan Rotz USDA ARS, University Park, PA		al.rotz@usda.gov	
Mark Stoermann	Newtrient, LLC	mstoerm@newtrient.com	
Robert Hagevoort New Mexico State University		dairydoc@nmsu.edu	
James M. Wallace	Sustain RNG, LLC	jim.wallace@jwallaceconsult.com	

Practices and Technologies	
Categories for GHG Assessment	Practices and Technologies to Reduce Manure Emissions
Biogas collection and	Anaerobic Digestion
management	Cover manure storage and flare
Manure storage/treatment	Acidification
manure handling	Convert flush to scrape. A key element of this conversion is the elimination of liquid storage
Solid liquid separation	Coarse fiber separation (could be screw press, slope screen or rotary drum)
Advanced treatment	Chemical flocculation followed by dewatering
	centrifugation
	Evaporation
	Vermifiltration
Composting	Windrow (conversion from liquid manure storage to composting such that all manure managed in the solid form)

6

5

Cover Manure Storage and Flare

Region	Base Case, MT CO2e/cow/year		Project Case (cover manure storage and flare), MT CO2e/cow/year
Southwest	5.	77ª	1.49
Southwest	2.43 ^b	2.66°	1.85

a = Confined, scape, solid liquid separation and long-term storage b = Open lot (assumption that 10% of manure managed as a liquid), flush, solid liquid separation and uncovered lagoon c = Open lot (assumption that 10% of manure managed as a liquid), flush, settling basin and uncovered lagoon

- Objective of "cap and flare" is to capture CH4 and oxidize it via combustion to CO2, significantly lowering its GHG impact.
- Assumes solid liquid separation is either existing or integrated with practice.
- Analysis assumes the flare is operational 81% of the time (Wightman and Woodbury, 2016).

8

10

12

Region	Base Case, MT	Project Case (acidification), MT	
Southwest	CO2e/cow/year	CO2e/cow/year	
Southwest	2.43 ^b	1.99	
dosage of 1-L of H2	SO4 (70%) per cubic meter	the long-term storage, treat the residual of of manure (13.4 lb. 70% H2SO4/1000 gal	llons manure).
dosage of 1-L of H2 The total volume of	SO4 (70%) per cubic meter manure for treatment is e onths of storage capacity, t	8	llons manure). In the spring

Coarse Fiber Separation

Region	Base Case, MT CO2e/cow/year		Project Case (solid liquid separation), MT CO2e/cow/year	
Southwest	2.66ª	5.19 ^b	2.43	4.24
Northwest	6.32 ^c		4.	46

a = Open lot, flush, settling basin and uncovered lagoon b = Open lot, flush vac feed lanes, settling basin and uncovered lagoon C = Confined, scrape, long-term storage

- Minimal reduction for an open lot where only 10% of manure is managed as a liquid.
- Bigger impact (second column for SW base and project case) when larger fraction of the manure is managed in the liquid form.
- · Northwest scrape to storage to illustrate adoption impact when all manure is managed in the liquid form.

10

Centrifugation Region Base Case, MT CO2e/cow/year Project Case (centrifugation), MT CO2e/cow/year 3.23 Southwest 5.77ª a = Confined, scape, solid liquid separation and long-term storage • Cleaner water than coarse fiber separation and substantially higher GHG reduction.

- Transportable solid fraction with increased nutrient density.
- Higher maintenance and energy cost than coarse fiber separation.

Chemical Flocculation

Region	Base Case, MT CO2e/cow/year	Project Case (chemical flocculation), MT CO2e/cow/year
Southwest	5.77ª	3.23

a = Confined, scape, solid liquid separation and long-term storage

- More operator intensive than centrifugation.
- Operating costs largely driven by chemical costs (which can be variable).
- Same numerical result as centrifugation for the SW case.

12

11

14

Regi	on	Base Case, MT	CO2e/cow/year	Project Case (Vermifiltration), MT CO2e/cow/year	
Calif	ornia	8.35ª	6.03 ^b	2.61	
Sout	hwest	2.43 ^d	2.66 ^c	2.03	
0	uction for		,	anure managed as a liquid. per cow basis) where only 10% of man	ure
aningful red	uction for a liquid.	an open lot but much	ess magnitude (on a	0 1	ure

Region	Base Case, MT CO2e/cow/year	Project Case (chemical flocculation), MT CO2e/cow/year
Southwest	5.77 ^a	1.06

a = Confined, scape, solid liquid separation and long-term storage

- The solid and liquid fractions are separated through thermal evaporation and the resulting vapor is sent to a compressor, where it undergoes mechanical recompression.
- The compressed vapor is used as the heat source for the evaporation process.
- The low boiling point constituents (such as ammonia) are concentrated separately through a patented process.
- The P is captured in the dry product (approximately 99% of P captured), nitrogen is captured as a stable liquid product.
- Value driven by recovered products.
- High capital cost, large dairy technology.

14

