

Current Heifer Inventory

What is the cost to raise a heifer in 2024?

What opportunities are present if we correct heifer inventory? What are the challenges we face to achieve the correct heifer inventory?

By AGE	Goal	Count	Difference
0-1	170	193	23
0-2	170	207	37
0-3	170	202	32
0-4	170	191	21
0-5	170	136	-34
0-6	170	156	-14
0-7	170	180	10
0-8	170	197	27
0-9	170	193	23
0-10	170	225	55
0-11	170	224	54
1-0	170	234	64
1-1	170	164	-6
1-2	170	225	55
1-3	170	180	10
1-4	170	231	61

STgenetics

10

	E	stima	ted S	Semen	ı Usa	ge Ne	eds /	mont	h	
Lact	Embryo	% of breeding	Sexed	% of breeding	Conv	% of breedings	Beef	% of breeding	Total	% of breeding
Lact Heifers	Embryo 0	% of breeding 0%	Sexed	% of breeding 77%	Conv 0	% of breedings 0%	Beef	% of breeding 23%	Total 471	% of breeding 29%
Lact Heifers Lact=1	Embryo 0 0	% of breeding 0% 0%	Sexed 364 81	% of breeding 77% 18%	Conv 0 0	% of breedings 0% 0%	Beef 107 366	% of breeding 23% 82%	Total 471 447	% of breeding 29% 28%
Lact Heifers Lact=1 Lact=2	Embryo 0 0 0	% of breeding 0% 0% 0%	Sexed 364 81 0	% of breeding 77% 18% 0%	Conv 0 0 0	% of breedings 0% 0% 0%	Beef 107 366 277	% of breeding 23% 82% 100%	Total 471 447 277	% of breeding 29% 28% 17%
Lact Heifers Lact=1 Lact=2 Lact=3+	Embryo 0 0 0 0	% of breeding 0% 0% 0% 0%	Sexed 364 81 0 0	% of breeding 77% 18% 0% 0%	Conv 0 0 0	% of breedings 0% 0% 0% 0%	Beef 107 366 277 423	% of breeding 23% 82% 100% 100%	Total 471 447 277 423	% of breeding 29% 28% 17% 26%

Heifer Inventory									
Strategy to Reach Target Number of					Lacta	tion #			
Heifers	Service #	Hei	fers	1	L	2	2	3	+
		High \$NM	Low \$NM						
	1	Sexed	Beef	Sexed	Beef	Beef	Beef	Beef	Beef
	2	Sexed	Beef	Beef	Beef	Beef	Beef	Beef	Beef
Total vs Goal	3	Sexed	Beef	Beef	Beef	Beef	Beef	Beef	Beef
Type Quantity	4+	Beef	Beef	Beef	Beef	Beef	Beef	Beef	Beef
Total Fresh 640 Dairy Bulis 15 Beef Calves 417 Heifer Calves 179 +/- Needed +10							S	Tgen	etics

Ctuata dia Dua adiu d	ID	LACT	TBRD	SEMEN	ID	LACT	TBRD	CBRD	SEMT
Strategic Breeding	2184	1	0	SX HOL	17477	2	0	н	SXJ
Strategies	2189	1	0	SX HOL	17506	2	0	J	SXH
011 4108.00	2195	1	0	SX HOL	17517	2	0	н	SXJ
	3343	9	0	CON BEEF	17553	2	0	н	SXJ
Predict semen usage and make	3681	8	0	CON BEEF	17558	2	0	J	CHR
precise preeding decisions	3814	2	0	SX BEEF	17562	2	0	X	CHR
	3906	7	0	CON BEEF	17563	2	0	н	SXJ
Control heifer replacement	3959	6	0	SX HOL	17628	2	0	н	SX1
creations	4071	7	0	CON BEEF	17656	2	0	н	SXI
	4140	1	0	SX HOL	17667	2	0	н	SYI
	4143	4	0	SX BEEF	17767	2	0	L L	CV1
Maximize the calf value using BxD	4145	1	0	SX HOL	17707	2	0	1	3/0
	4163	1	0	SX HOL	17782	2	0	J	SXH
	4166	1	0	SX HOL	17806	2	0	н	SXJ
from the broader	4172	1	0	SX HOL	17811	2	0	J	SXH
nom me breeder	4277	6	0	CON BEEF	17816	2	0	J	CHR

How to use gender-sorted semen in reproductive programs

13

Review of the Literature

- Optimal time of insemination with conventional semen is accepted to be 4-16 hours after onset of estrus (Dransfield et al., 1998; Stevenson et al., 2014)
- Early observational studies indicated that postponement (16 to 40 h after onset of estrus) of AI with gender-sorted semen improved P/AI compared with AI between 4 to 12 h after onset of estrus (Sá Filho et al., 2010; Sales et al., 2011; Bombardelli et al., 2016)
- In contrast, inseminating cows with sexed semen 16 h after GnRH yielded more P/TAI than when cows were inseminated 24 h after GnRH. (Lauber et al. 2020)
- More research is needed to determine the optimal time of insemination
 with gender-sorted semen

STgen

Exp 1 - Objective and Hypothesis

Objective:

Evaluate the effect of the interval between induction of ovulation and artificial insemination on fertility of lactating Holstein cows

Hypothesis:

Insemiantion around 16 h after the last GnRH treatment of the synchronization protocol will increase P/AI compared to insemination at other intervals.

STgenetics

17

Exp 1 – Material and Methods

- 13,318 lactating Holstein cows from 2 commercial farms were used.
- Cows were synchronized with a Double-Ovsynch protocol for first postpartum insemination. Cows failing to conceive were resynchronized with a GGPPG protocol.
- Cows were inseminated between 13 and 23 h after the last GnRH treatment.
- Dairy sexed female, beef sexed male, and beef conventional semen was used based on recommendation of consultants to the farms.
- Exact time of the last GnRH and the AI recorded for all the animals
 STgenetics

21

Exp 2 - Objective and Hypothesis

Objective:

Evaluate the effect of the interval between induction onset of estrus detected by an activity monitor and timing of insemination on P/AI

Hypothesis:

Insemiantion around 16 h after the onset f estrus will result in more P/AI compared to insemination early after the onset of estrus or after 24 h.

STgenetics

• Dairy sexed female and beef conventional semen was used based on recommendation of consultants to the farms.

2 – Material a	and Metho	ods
Item	Value	
Farms	2	
Cows	12,126	
First AI	11,810	
Resynch AI	10,643	
Total AI	22,453	
DIM	99 (21 – 296)	
TBRD	1.8 (1 – 8)	
Lactation#	2.2 (0 – 9)	
Milk production (lb/d)	70.1 (18 – 145)	
Milk production (Kg/d)	31.8 (8 - 66)	
		STger

Effect of interval between onset of estrus and AI and sexed vs conventional semen on P/AI (raw data) - Exp 2 70 Conventional 70 Sexed 1000 َ ⁶⁰ N = 10,948 900 €⁶⁰ ≈ 50 N = 11,505 800 % 50 700 Pregnancies/Al, 05 05 05 07 es/Al 40 egnancie 05 10 10 0 C 8 12 16 20 24 28 32 8 12 16 20 24 28 32 36 40 STgenetics Hours after onset of estrus Hours after onset of estrus

26

Conclusions

- Great advancements in gender-sorted semen technology have been made over the past 10 years.
- Improvements in reproductive efficiency of dairy farms has allowed for use of gender-sorted semen in both heifers and cows.
- Heifer inventory management utilizing a sexed and beef semen breeding strategy have become widely adopted requiring gendersorted semen usage in cows and heifers

STgenetics

Conclusions

- Insemination between 13-23 h after the last GnRH of the synchronization protocol did not affect P/AI (Exp 1)
- Insemination of cows early after the onset of estrus (0-2h) or after 24h after the onset of estrus decreased P/AI compared to insemination between 13-23 h after the onset of estrus (Exp 2)
- Gender-sorted semen should be used like conventional semen with time of insemination 13-23 h after the last GnRH of a synchronization protocol or after the onset of estrus

STgenetics