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What is AI?

Why is AI important for dairy systems?
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- Final Considerations
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Genomics: Amazing Progress!

Wisconsin Dairy Cow Trend, 1931-2021*

1n 2021, Wisconsin produced 180% more milk with 38% fewer cows than in 1931, due
to much higher milk production per cow
24804

Genomics, Transcriptomics, Proteomics,
Metabolomics, Epigenomics, Microbiomics, etc.

Costs to genotype drastically decreased over time!

Cost per Raw Megabase of DNA Sequence

N

E High-Throughput Phenotyping
“Phenomics”

@

Sensing Technologies: Individual Animal Data

- For large-scale phenotyping (what is it?): Multi-Sensor Systems .,
“sensing technology is the solution” By @
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The total farm employment—hired workers and self-employed
and family workers—fell by 81% between 1948 and 2017 (USDA,
ERS, 2020). {i@t}
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Artificial Intelligence %ﬂ &% Economic impact of Al %)

Artificial Intelligence

McKinsey estimates that AI may deliver an additional impag‘: dtgtyak?l:g‘s;m t]:gio e
economic output of around US$13 trillion by 2030.This will

mainly come from substitution of labor by automation and % ‘z;i;g)zogmeb}’oéml e

o ChatGPT

Machine Learning Natural

e o e o a0 e af ot increased innovation in products and services. unskilled while 33% (107M)
- et R wil be skilled
Knowecge /ASIGATING REI{Laming recgg‘rﬁioﬂ »Labourproductivty #Personaiisaion  m Time saved ~ Qua
capture Methods This presentation examines the integral role of Artificial 0o P H ’ | v
5 215
D"e{aeg:)esgll'?ges VR/AR/MR Intelligence (Al) in modernizing dairy systems. It explores how Al 5
Deep Learning through computer vision, can monitor animal health and 10
(CNNs, GANs, Transformers, etc. behavior, and how Natural Language Processing can enhance
labor efficiency. The application of mixed reality for augmenting 5
Technologies human perception in dairy farming is also discussed. Challenges 4
Platforms and potential solutions for the adoption of Al in dairy farming are 0= =
Cloud/Fog/Edge considered, emphasizing Al's potential to revolutionize the 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
UX industry, increase sustainability, and improve productivity and Source: PWC (2018)
animal health. McKinsey (2018), Notes from the AI Frontier: Modeling the Impact of AT on the World Economy.

PWC (2018), The macroeconomic impact of artfiial intelligence.
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We should leverage the AI development @ What do we need to advance AI in dairy?

Algorithms Research perspective:

Cloud platforms . — L. T . .

Edge-computing systems Capacity Building Connectivity Multidisciplinarity Data Integration
Sensors ] i v 3

Connectivity

Etc.

Global investment in Al jumps to record high
BUSA Restof World  China

saobn

soon

sy ©

s200n

Computer Vision System for Real-Time Animal Monitoring
More than 100 RGB and Depth cameras

200 20m 2012 2013 20 2015 2006 207 2018 2019 2020 2021

Edge- and Cloud-Computing
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Artificial Intelligence in Dairy Systems &%

Our Goal:
Today's Example:
| ] I |
Computer vision:
Identification, Diseases,
Locomotion
9

Implementing AI in Livestock Operations

Camera

Automation: Cloud-Computing Framework &

1 Step: Image Classification
Bad Good

Xception (Chollet, 2017)
2D CNN
Accuracy = 97%
52,247 total

— 19,592 selected

If good:

24 Step: Image Segmentation (Mask)
U-Net (Ronneberger et al., 2015)
HEEE
Intersection Over Union = 0.93 o i ot

34 Step: Image Identification
(Animal Identification)

4th Step: Image Classification
(Body Condition Score: 1-5)

* 92 lactating dairy cows;

» Training set: 16,055 images
automatically acquired at UW-Madison;

» Testing set: 3,680 images test

» Deep Learning (CNN; Xception)

+  Mean Accuracy: 96% to identify individual
animals

Ferreira et al., 2023
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Animal identification using 2D images

+ 92 lactating dairy cows;

+ Training set: 16,055 images
automatically acquired at UW-Madison;

+  Testing set: 3,680 images test

+ Deep Learning (CNN; Xception)

+  Mean Accuracy: 96% to identify individual
animals

similarity!

31 Step: Image Identification
(Animal Identification)

. cepion (cntes 2017
20

Camera

Ferreira et al., 2023

Animal Identification: 3D representation @
= E M
Voxels (VoxNet; Maturana and Scherer, 2015) .

Point cloud (PointNet; Qi et al., 2016) —~ H ]

2D imga. (a) Original depth frame (b) Output from Mask R-CNN
Depth images
(VGG16, Xception, Inception v3) -
Tt | i
split representation | Architecture | F; score
Ro! or VGGI16 0888 (c) Generated point cloud  (d) Augmented point cloud ) Qamealceomeacy,
RO" DI* 0.904 wrid
ﬁ ot oF o0
RO' pPCt 0.669
RO = Random o o om0 F1-score

co? DI VGG16 0718 Xception | PointNet | VoxNet

CO = Chronological

Inception ¥3 | 0.750

- o wp How frequent should I
retrain the algorithms?

0.917 0533 | 0017

0.846 0551 0.831

Co* PCH PointNet 0120
co? oc? VasNet 0.656

0.835 0411 | 0506

0.856 0282 | om
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Ferreira et al, 2022

Body Condition Score using 3D images

» 59 lactating dairy cows

« Train: 11,943 images

» Test: 651 images

» Deep Learning (CNN; Xception)

» Accuracy (0.25-error): 81% to classify BCS
»  Accuracy (0.5-error): 96% to classify BCS

4" Step: Image Classification
(Body Condition Score: 1-5)

o s, 017
P P

Camera
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Problem: Health Disorders During Transition Period

« The transition period is responsible for 67% of all cases of disease in dairy cows
(Carvalho et I 2019);

Negative
“"“energybalance!

3 weeks pre- until 3

weeks post-calving W Body Weight
Dry Matter Intake

m Milk Yield
| ]

4 5 6 7 8 9 10 1 12

Months after Calving

+ The severity of NEB can increase the risk of various peripartum disorders, including
ketosis, hypocalcemia, retained placenta, metritis, endometritis, and

15

displaced abomasumy;
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Economic Losses

« Average cost per case:
- retained placenta: from $257 to $414 (Liang et al, 2017; Gohary et al, 2018)
- metritis: $241 to $513 (Liang et al, 2017; Perez-Baez et al, 2020)
- subclinical ketosis: from $169 to $359 (Mostert et al,, 2018; Raboissan et al,, 2015)
- clinical ketosis can cost up to $1,673 (Steeneveld et al,, 2020)

@

+ Large economic losses on dairy farms: treatment costs, reduced productive and
reproductive performance and increased culling;

» Body condition score (BCS) is commonly used as a tool to assess risk of NEB in

41 L Akl

X‘IKIII}(
i

S e Y e i
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Early detection of subclinical ketosis in dairy cows @

- Goal: Use prepartum 3D images to predict subclinical ketosis (1-14 DIM)
- 21, 14 and 7 days prior to calving;

- 76 Holstein cows were individually collected (40 SCK and 36 non-SCK);

- Blood samples were obtained ~every other day from -7 to +21 DRTC,

- Blood BHB values above 1.0 mmol/L postpartum -> subclinical ketosis

- 27,300 top-down 3D images;

Predlctlon

Prepartum

Subjective and Labor-Intensive

 BCS is a subjective measurement on a 5-point scale that is difficult to measure
consistently and systematically in large dairy operations;

2P R SRR
N
1_|

diff. in shape:
from-21to-14

« It requires a trained evaluator to collect BCS information

18

Early detection of subdlinical ketosis in dairy cows @

For each image:
- Biological features (mask size, surface area, volume)
+ CNN features (Xception architecture, trained to evaluate BCS)

1,024 features « CNN Features

| o

Xception; Chollet, 2017

Ferreira et al., 2022 — ADSA

19

Biological + CNN Features: total of 1027 features/image;

3/19/24
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Early detection of subclinical ketosis in dairy cows

» PLS-DA achieved a mean precision of 0.65, recall of 0.91, and F1-score of 0.75:

Precision Recall F1-Score
Features Algorithm (meanztstdev) (meanztstdev) (mean tstdev)

BCSonly =~ GBDT  0.503+0.160  0.828+0.205  0.611%0.150

BCSonly  PLS-DA  0.534+0.148  0.963+0.078  0.678+0.125
Ourfeatures  GBDT 0.630+0.094  0.908+0.106  0.739+0.086 ) +11
Ourfeatures PLS-DA  0.650£0.090  0.912+0.102  0.754+0.081 %

/ |

~65% of detected ~91% of sick cows
cows actually got sick were early

detected
False positives are better than false negatives!
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Monitor Respiration Rate @

Adjusted pixel intensity

Pixel intensity Fast .
(original domain) Fourier Frequency Domain (Transformed)
- Transform

Mantovani et al., 2023 - JDS

Monitoring Feeding Behavior @

1,546 images were used to train a deep
learning algorithm for object detection s szt
(YOLOV3); 3

* 663 extra images were used for testing

Assessing optimal frequency fo
vision systems developed to monitor feedin;
of group-housed Holstein heifers

7 resoin

10 99,8 99.5 99.7 100 99.599.92 100 99.6

Accuracy (%)
gg3888

Gif GIf GIf GIf GIf GIf GiIf Glf
12 3 4 5 6 7 8

rhe R2 between observed and predicted:
Total eating time: 0.99

Visit duration: 0.77

Interval between visits: 0.70

Visits: 0.55

23
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Predictive Performance — Respiration Rate

- 168 videos (30-seconds segments) from 32 lactating cows
- Infrared images (night period)
- RGB images (day period)

Observed vs Predicted Breaths Obsarvadive Predictad Brasthe

infrared RGB.

y=099-091x
R*=077
807  RMSE = 8.3 (15.8%)

yZ08-091x
R?=074

Observed Breaths (breaths/min)

Observed Breaths (breaths/min)

80 100

B 100 0 60
Predicted Breaths (breaths/min) Predicted Breaths (breaths/min)

Mantovani et al., 2023 - JDS
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Impact of lameness

Lameness is the third largest cause of economic losses in
the dairy industry after mastitis and reproductive disorders,
estimated to cause an annual loss of over 11 billion US

dollars globally.

= Fertility Costs
10% = Re duced Milk Yeild
QilingCots
Breakdown Medcine (osts
28% of cost = Otber

Average prevalence
22.8% worldwide

Total cost
$177.6/case

S

@

v The majority of farmers were about three times less
likely than skilled personnel to detect the lame cows
(0~20% vs. 1.2~64%)

Problems of visual mobility scoring

© Walks with even weight-
bearing and rhythm on all four
feet, with a flat back

Using visual mobility scoring resulted in:

© Long, fluid strides possible

 Steps uneven (rhythm or
weight-bearing) or strides
shortened; affected limb
or limbs not immediately
identifiable

v Even among trained personnel, there was variability
FT—— in |gter—rater agreement (weighted kappa of

alimb that is immediately ~
wdemwﬂ;m; and/or om“ois\y 04 073)
shortened strides (usually
with an arch to the centre of

the back) v Training had limited effectiveness in improving score
agreement (inter-rater weighted kappa of 0.48 before

© Unable to walk as fast as
brisk human pace (cannot
keep up with the healthy herd)

* Lame leg easy to identify -
limping; may barely stand on

and 0.52 after training)

lame leg/s; back arched when
standing and walking

Ousvéri et al, (2017), Goldman Sachs (2016), Willshire et al. (2009), Cha et al. (2010), Thomsen et al. (2023)

o Verylame

AHDB (2020), Sadig et al. (2019), Rutherford et al. (2009), Thomsen et al. (2008

25

Technologies for objective mobility analysis / scoring @

Attaching markers and motion tracking
(e.g. BioMOOchanics)
[FPpiseLLL

Pressure mapping system
(e.g. Gaitwise)

nmm

Labor intensive
Time consuming

Large installation space
High system cost

Mertens et al. (2012), https://www.cowiifemcgill.com/

27
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AIPEC (AI-based pose estimation system for cattle)

» 25 keypoints * Multiple animals
* Real time » Markerless Training dataset
9,003 images
Nose Training epoch
o 3,750 epochs
Lw Test dataset
p i) 970 images (1,432 animals)

Performance
8.79 £ 2.20 pixels
(Average Euclidean distance between
the ground truth keypoints and the
predicted keypoints)

: Y2 .
Elbow. | <
Carpus /H /
Eront fetlock 7 \
% Rear toe 7 ‘>
g L o A

28
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Analysed mobility variables

Head posi Vertical distance between the heights of the head and the
Stride length (cm) Horizontal distance between two consecutive toe
_ landings of the same toe

Tracking-up (cm) Horizontal distance between front toe landing and
ipsilateral rear toe landing

Stride duration (s) Time interval between two consecutive toe landings of
the same toe

Stance duration (s) Time interval between toe landing and following toe off
Swing duration (s) Time interval between toe off and following toe landing

Stance phase (%) Stance duration / stride duration
T 045 Swing phase (%) Swing duration / stride duration
= - . WV Stride length / stride duration
3 Perspective distortion s
3 035 ;
3 correction curve Anterior angle at the elbow joint
£ 025 Posterior angle at the stifle joint
2
= Posterior angle at the carpus joint
T
2 Anterior angle at the hock joint
<0 1000 1100 1200 1300 1400 Posterior angle at the front fetlock joint

Y-coordinate in the image (pixel) Posterior angle at the rear fetlock joint

Experiment overview

Video recording & selection
Machine learning (Random Forest)

204 video clips

=il

Anotate mobility score
Score 0 (Good):
Score 1 (Imperfect):
Score 2 (Impaired):
Score 3 (Severe):

Training dataset } {

Test dataset
(80%)

(20%)

Classification model
(Score 0, 1, and 2+3)

Cross validation
(Repeated 10 times)

Pose estimation
Time series XY-coordinate data

10 spatial and temporal variables { Performance evaluation }

(Sen, Spe, PPV, NPV, Acc, Wt. kappa, AUC-ROC)

7 joint angle related variables

N
(Vo]

30

Measurements of variables derived from pose estimation

Mobility score Previous reports

Healthy cow

Variables

*ROM: Range of motion

Head position -0.26 + 0.14 -0.33 + 0.19 -0.38 £ 0.18 -0.46 £ 0.20 -

0.80 = 0.65 1.00 £ 0.74 137 £ 1.12 219 £ 231 =
Stride length (cm) 161.7 = 8.1 1579 + 8.2 152.0 £+ 10.7 1470 + 11.4 1.5t01.69m
Tracking-up (cm) 4.0 =22 9.3 + 5.0 109 £ 6.6 159 £ 78 4t0 6.5 cm
Stride duration (s) 1.25 = 0.09 131 = 0.11 134 = 0.13 139 £ 0.21 1.22to1.5s
Stance duration (s) 0.83 = 0.07 0.89 + 0.10 0.91 £ 0.11 0.95 £ 0.18 0.661t00.85s
Swing duration (s) 0.42 = 0.02 0.43 £ 0.02 0.43 = 0.03 0.43 = 0.04 0.38t00.46s
Stance phase (%) 66.1 = 1.6 674 + 1.8 68.1 + 1.7 68.4 + 2.7 64.2 to 66.9%
Swing phase (%) 339 + 1.6 326 £ 1.8 319 £ 1.7 31.6 + 2.7 33.0 to 35.7%
Walking speed (cm/s) 129.4 = 10.7 121.0 £ 11.1 114.4 £ 12.7 108.6 £ 19.7 11to1.4m/s
Back angle (°) 183.0 = 3.0 180.6 = 2.4 179.2 £ 3.6 176.4 £+ 3.7 183.0°
Elbow joint angle ROM* (°) 529 + 45 53.0 + 4.5 525 + 4.8 529 £ 70 40 to 47°
Stifle joint angle ROM (°) 40.2 + 3.5 39198=E8357, 39.1 + 46 39.8 + 3.9 40 to 44°
Carpus joint angle ROM (°) 65.2 = 6.4 63.6 £ 6.8 64.1 £ 73 59.9 £ 7.8 48 to 52°
Hock joint angle ROM (°) 43.0 £ 3.1 425 £ 35 422 £3.2 42.2 £ 36 30 to 41°
Front fetlock joint angle ROM (°) 929 + 5.8 90.6 = 7.3 86.7 = 7.8 81.8+ 5.3 66 to 106°
Rear fetlock angle ROM (°) 82.8 £ 6.5 82.4 £ 6.2 81.2 + 6.3 79.6 £ 5.9 69 to 98°

Maertens et al. (2011), Van Nuffel et al. (2013), Herlin and Drevemo (1997), Meyer et al. (2007), Alsaaod et al. (2017)

Performance of machine learning classification model

Based on the 10-fold cross validation

Mobility | Number of | Sen: Spe: Pos Pred Neg Pred Accuracy Weighted
score cattle (%) (%) Value (%) Value (%) (%) kappa
64 76.3 86.6 724 88.6 83.4
(601-835)  (844-889)  (668-780)  (843-928)  (80.4-86.5)
o5 59.0 82.6 61.7 80. 74.9 .69 0.86
(480-700)  (796-856)  (572-662)  (766-852)  (723-775)  (0.62-076)  (0.84-0.89)
2+3 75 76.8 86.8 76.4 87.2 83.2
(708-828)  (87-910)  (692-835)  (834-90.9)  (79.7-86.6)

*Area Under the Receiver Operating Characteristic Curve

v The weighted kappa coefficient of 0.69 is comparable to or higher than the inter-rater agreement of the
visual mobility scoring (0.65 across a 3-level scale)

v The AUC-ROC of 0.86 indicates that the present classification model has excellent discriminating ability
among different mobility classes

Schlageter-Tello et al. (2014), Mandrekar et al. (2010)
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Examples of applications of AiPEC

Limitations of the present approach

Overlapping

Meandering

ob 0 0 000 oD
Li—F'—%‘r\
>~~1aun= a2 S
33
New Strategy

3/19/24

34
Keypoints
Hip ridge
Head Neck Withers Back Hook i Tail head Pin
Neckéngle Withelis angle Back:angle Hipéngle
36
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Preliminary Results

Reference—r——=——+—— =
Nobilty score 0 Mobilty score 3
(Severely impaired mobilty)

Mobility score 0: Good mobility:
A (Good mobiiy)

Back lateral movement-{
Withers lateral movement-
Walking speed-|

Tail head lateral movement-|
Neck lateral movement-

CV of right pin speed-

Right pin lateral movement-

[
HIH
I
—HO—
HIH
I
Left pin Iatersl mavement | rD% Mobility ~ Number of ~ Sensitivity Specificity F1-score Accuracy AUC-ROCT

D

ju
HH

[1]

Hh

=

i+

=~

>I4
H—

[

L)

L

[

L]

Left hook lateral movement-{
CV of left pin speed | score cattle (%) (%) (%) (%)
78 87.2 94.7 88.2 92.1 0.888

CV of right hook speed
(80.7-93.7)  (92.0-975) (83.8-92.5) (89.1— 95.1) (0.866 - 0.910)

Score 1 7 54.4 84.2 55.4 76.0

(43.1-65.6) (79.5-88.8) (45.5-65.2) (71.1-80.8)

Score 87+20 816 823 79.1 823
(74.9-88.2) (73.5-91.1) (74.8-83.5) (77.3 - 87.3)

Score 0

Hip lateral movement-
Head lateral movement-
Right hook lateral movement-{
SD of hip angle{

CV of neck speed

SD of back angle-

CV of withers speed-
CV of left hook speed-|
SD of withers angle-|

CV of back speed

CV of hip ridge speed-{
CV of tail head speed-|

=Testcase:
2+3

CV of head speed-|

m N r SD of neck angle- . . . . . 3

wl % o] Sy ’ =

RS W oot 80 s it
0 Mean decrease in accuracy (%)

o

Xcoodinatein mage pxe) X.cooesnate inmage (e
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Final Considerations @ Acknowledgments @

- Digital technologies are crucial to collect cheaper, precise, and real-time
phenotypes P\
- . . - . USDA #E:ENIFA WISCONSIN
+ Animal-level information is a very important component of any integrated = 7 UNIVERSITY OF WISCONSIN-MADISON
databases wa— E WARF
United States Department of Agriculture

+ Leverage Artificial Intelligence Systems: Applications in Livestock (Dairy and Beef) Natiorial Iistitite of Food and Agiculture
+ Itis not about new questions only! It is about unanswered questions! DAIRY INNOVATION HUB

- Digital Agriculture: undergrad and grad courses (livestock, crop, water, soil - data
management, storage, and analyses — cloud computing) _ CiNTERFOR
HIGH THROUGHPUT

+ New generation of students/professionals COMPUTING
+ Multidisciplinary teams: Collaboration across campus

B® Microsoft
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WISCONSIN

Thank you!

@digitallivestock
@jrrdorea
joao.dorea@wisc.edu

Combining high-throughput phenotyping and genomics

-Data Integration:

Body growth + Mammary gland development + Genomic information cioud 20 TB/mo
-From birth to first lactation (240 animals): ®
Server
[ ]
[--- ]
o=
m_o"de 2 mgde 30
g -

Edge-Computing System

- Edge-computing system with 29 edge devices (3D cameras) ;
- Deployed in November 2021;

- During this period, ~130 TB of daily images from 200 dairy heifers
were generated;

- Each camera generates ~10.3 GB per day;

- Compressed in a single file, which result in approximately 300
GB per day;

- To upload such amount of data to a cloud system in a 24-hour
period, an average of 30 mbps network bandwidth would be
required.

- Farm pays for 25 mbps, but only gets ~5-10 mbps

- Ilt; would take 4 days and 6 hours if network bandwidth is 7
mbps

Analytical strategy to overcome!

@)
)
c
a

=z
o
o
®
N

148

il ®

=z
o
a
o
N
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Reducing Data Dimension - Autoencoders

Pixel value 1-dimension: 1 x 936

Predicting Body Weight from 3D imag

Cattle: Cominotte et al., 2020 -
Livestock Science 232:103904
Pigs: Fernandes et al., 2019 -
Journal of Animal Science 97:496-508
Other groups

loss = [[x-X|* = |[x-d()|]* = ||x-de()|*

We cannot transfer 20 TB of data/mo @

44
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Reducing Data Dimension - Autoencoders @

Piclvalue 1-dimension: 1 x 936 Prediction of Calf BW
- \ Independent Testing Set:

Biological Autoencoders
Features Features
0.81 0.78
0.88 0.88
‘‘‘‘‘ 6.50 6.90

Reduction in size:
From: 600 KB (depth image) — Biological Feat.

To: 0.21 KB (single vector) — Autoencoder Feat.

45
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