

Outline

- What is AI?
- Why is AI important for dairy systems?
- Applications of AI in dairy farms :
 - Computer Vision
 - Identification, Diseases, Heat-Stress, Locomotion
- Final Considerations

2

What do we need to advance AI in dairy? **Research perspective:**

Capacity Building Connectivity Multidisciplinarity Data Integration

Computer Vision System for Real-Time Animal Monitoring More than 100 RGB and Depth cameras Edge- and Cloud-Computing

Artificial Intelligence in Dairy Systems

Our Goal:

-Optimize farm management decisions: - Nutrition and Health (others...) -Improve labor efficiency -Important for animal breeding programs

Today's Example:

9

Economic Losses

- Average cost per case:
 - retained placenta: from \$257 to \$414 (Liang et al., 2017; Gohary et al., 2018)
 - metritis: \$241 to \$513 (Liang et al., 2017; Perez-Baez et al., 2020)
 - subclinical ketosis: from \$169 to \$359 (Mostert et al., 2018; Raboissan et al., 2015)
 - clinical ketosis can cost up to \$1,673 (Steeneveld et al., 2020)
- Large economic losses on dairy farms: treatment costs, reduced productive and reproductive performance and increased culling;
- Body condition score (BCS) is commonly used as a tool to assess risk of NEB in lactating cows;

Predictive Performance – Respiration Rate

- 168 videos (30-seconds segments) from 32 lactating cows
- Infrared images (night period)
- RGB images (day period)

Problems of visual mobility scoring

26

 Training had limited effectiveness in improving score agreement (inter-rater weighted kappa of 0.48 before and 0.52 after training)

AHDB (2020), Sadiq et al. (2019), Rutherford et al. (2009), Thomsen et al. (2008)

AiPEC (AI-based pose estimation system for cattle)

		Previous repor				
Variables	Score 0	Score 1	Score 2	Score 3	Healthy cow	
Head position	-0.26 ± 0.14	-0.33 ± 0.19	-0.38 \pm 0.18	-0.46 \pm 0.20	-	
Head bob	0.80 ± 0.65	1.00 ± 0.74	1.37 ± 1.12	$\textbf{2.19}~\pm~\textbf{2.31}$	-	
Stride length (cm)	161.7 ± 8.1	157.9 ± 8.2	$152.0~\pm~10.7$	147.0 \pm 11.4	1.5 to 1.69 m	
Fracking-up (cm)	4.0 ± 2.2	9.3 ± 5.0	$10.9~\pm~6.6$	$15.9~\pm~7.8$	4 to 6.5 cm	
Stride duration (s)	1.25 ± 0.09	1.31 ± 0.11	$1.34~\pm~0.13$	1.39 \pm 0.21	1.22 to 1.5 s	
Stance duration (s)	0.83 ± 0.07	0.89 ± 0.10	$0.91~\pm~0.11$	$0.95~\pm~0.18$	0.66 to 0.85 s	
Swing duration (s)	0.42 ± 0.02	0.43 ± 0.02	$0.43~\pm~0.03$	$0.43~\pm~0.04$	0.38 to 0.46 s	
Stance phase (%)	66.1 ± 1.6	67.4 ± 1.8	68.1 ± 1.7	68.4 ± 2.7	64.2 to 66.9%	
Swing phase (%)	33.9 ± 1.6	32.6 ± 1.8	$31.9~\pm~1.7$	$31.6~\pm~2.7$	33.0 to 35.7%	
Walking speed (cm/s)	129.4 ± 10.7	121.0 ± 11.1	114.4 ± 12.7	108.6 \pm 19.7	1.1 to 1.4 m/s	
Back angle (°)	183.0 ± 3.0	180.6 ± 2.4	179.2 \pm 3.6	176.4 \pm 3.7	183.0°	
ilbow joint angle ROM* (°)	52.9 ± 4.5	53.0 ± 4.5	52.5 ± 4.8	52.9 ± 7.0	40 to 47°	
Stifle joint angle ROM (°)	40.2 ± 3.5	39.9 ± 3.7	$39.1~\pm~4.6$	$39.8~\pm~3.9$	40 to 44°	
Carpus joint angle ROM (°)	65.2 ± 6.4	63.6 ± 6.8	$64.1~\pm~7.3$	59.9 \pm 7.8	48 to 52°	
Hock joint angle ROM (°)	43.0 ± 3.1	42.5 ± 3.5	42.2 ± 3.2	42.2 ± 3.6	30 to 41°	
ront fetlock joint angle ROM (°)	92.9 ± 5.8	90.6 ± 7.3	86.7 ± 7.8	81.8± 5.3	66 to 106°	
Rear fetlock joint angle ROM (°)	82.8 ± 6.5	82.4 ± 6.2	81.2 ± 6.3	79.6 ± 5.9	69 to 98°	

.

Performance of machine learning classification model

Based on the 10-fold cross validation											
Mobility score	Number of cattle	Sensitivity (%)	Specificity (%)	Pos Pred Value (%)	Neg Pred Value (%)	Accuracy (%)	Weighted kappa	AUC-ROC*			
0	64	76.3 (69.1 - 83.5)	86.6 (84.4 - 88.9)	72.4 (66.8 - 78.0)	88.6 (84.3 - 92.8)	83.4 (80.4 - 86.5)	0.69 (0.62 - 0.76)	0.86 (0.84 – 0.89)			
1	65	59.0 (48.0 – 70.0)	82.6 (79.6 – 85.6)	61.7 (57.2 – 66.2)	80.9 (76.6 – 85.2)	74.9 (72.3 – 77.5)					
2 + 3	75	76.8 (70.8 – 82.8)	86.8 (82.7 – 91.0)	76.4 (69.2 - 83.5)	87.2 (83.4 - 90.9)	83.2 (79.7 – 86.6)					
*Area Under the Receiver Operating Characteristic Curve											

- ✓ The weighted kappa coefficient of 0.69 is comparable to or higher than the inter-rater agreement of the visual mobility scoring (0.65 across a 3-level scale)
- ✓ The AUC-ROC of 0.86 indicates that the present classification model has excellent discriminating ability among different mobility classes

Schlageter-Tello et al. (2014), Mandrekar et al. (2010)

Final Considerations

- Digital technologies are crucial to collect cheaper, precise, and real-time phenotypes
- Animal-level information is a very important component of any integrated databases
- Leverage Artificial Intelligence Systems: Applications in Livestock (Dairy and Beef)
- It is not about new questions only! It is about unanswered questions!
- Digital Agriculture: undergrad and grad courses (livestock, crop, water, soil data management, storage, and analyses – cloud computing)
- New generation of students/professionals
- Multidisciplinary teams: Collaboration across campus

Combining high-throughput phenotyping and genomics

-Data Integration:

Body growth + Mammary gland development + Genomic information Cloud → 20 TB/mo -From birth to first lactation (240 animals):

